Telegram Group & Telegram Channel
πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step


πŸ”Έ Presenter: Amir Kasaei

πŸŒ€ Abstract:

This paper explores the use of Chain-of-Thought (CoT) reasoning to improve autoregressive image generation, an area not widely studied. The authors propose three techniques: scaling computation for verification, aligning preferences with Direct Preference Optimization (DPO), and integrating these methods for enhanced performance. They introduce two new reward models, PARM and PARM++, which adaptively assess and correct image generations. Their approach improves the Show-o model, achieving a +24% gain on the GenEval benchmark and surpassing Stable Diffusion 3 by +15%.


πŸ“„ Papers: Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step


Session Details:
- πŸ“… Date: Wednesday
- πŸ•’ Time: 2:15 - 3:15 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️



tg-me.com/RIMLLab/153
Create:
Last Update:

πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step


πŸ”Έ Presenter: Amir Kasaei

πŸŒ€ Abstract:

This paper explores the use of Chain-of-Thought (CoT) reasoning to improve autoregressive image generation, an area not widely studied. The authors propose three techniques: scaling computation for verification, aligning preferences with Direct Preference Optimization (DPO), and integrating these methods for enhanced performance. They introduce two new reward models, PARM and PARM++, which adaptively assess and correct image generations. Their approach improves the Show-o model, achieving a +24% gain on the GenEval benchmark and surpassing Stable Diffusion 3 by +15%.


πŸ“„ Papers: Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step


Session Details:
- πŸ“… Date: Wednesday
- πŸ•’ Time: 2:15 - 3:15 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/153

View MORE
Open in Telegram


RIML Lab Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Mining Work?

Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. β€œThis is how new coins are created” and new transactions are added to the blockchain, says Okoro.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

RIML Lab from vn


Telegram RIML Lab
FROM USA